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1. Introduction

As string and M-theory continue to develop, it remains a problem of central importance to

produce models that are relevant to 4-dimensional particle phenomenology. While many

approaches to this goal have been explored over the years, a string model with exactly the

particle content and detailed properties of the standard model remains elusive. One of the

first and currently most successful approaches to this challenge has been provided by het-

erotic string theory. Because they naturally incorporate gauge unification, heterotic models

are particularly well suited for use in string phenomenology. The vector bundles with SU(n)

structure group used in heterotic models lead to the gauge groups of grand unified theories

(GUTs) in 4-dimensions and under suitable symmetry breaking (that is, Wilson lines, etc)

can contain the symmetry of the standard model. More specifically, compactification of 10-

dimensional heterotic string theory on Calabi-Yau three-folds equipped with (poly-)stable

holomorphic SU(n) vector bundles leads to N = 1 supersymmetric versions of GUTs.

Despite substantial recent progress [12 – 22], heterotic model-building continues to

present a number of formidable mathematical obstacles. In addition to a Calabi-Yau three-

fold X, heterotic models require two holomorphic (poly-)stable vector bundles V and Ṽ .

Except for the simplest case of the so-called “standard embedding” (in which V is taken to

be the tangent bundle to the Calabi-Yau and Ṽ is trivial) explicit constructions of both the

Calabi-Yau three-fold and the vector bundle, V are generally hard to obtain and difficult

to analyze mathematically. It is our goal in this work to present techniques studying a

large class of heterotic models in detail. We utilize the well-known monad construction of

vector bundles to build bundles over the set of compete intersection Calabi-Yau manifolds.

It is our hope that by formulating a systematic construction of a large class of vector

bundles over an explicit and relatively simple set of Calabi-Yau manifolds, we can build

a substantial number of heterotic models which can be thoroughly scanned for physically

relevant properties. This program was begun in [1] in which we laid out an algorithmic

approach to bundle constructions over cyclic Calabi-Yau three-folds defined as complete

intersections in a single projective space. In this work, we greatly extend our class of

bundles and manifolds by generalizing the techniques to Calabi-Yau manifolds obtained as

complete intersections in products of (un-weighted) projective spaces. From the 7890 such

complete intersection Calabi-Yau manifolds (CICYs) classified in [2 – 7], we consider the

4500 or so “favourable” ones, by which we mean CICYs whose second cohomology entirely

descends from the ambient space. In this paper, we focus on the “traditional” class of

positive monads, that is, monads defined using strictly positive line bundles only. In a

forthcoming publication [45] we will show that this condition of positivity can, in fact, be

somewhat relaxed.

This paper has two main objectives. First, we will show that there is a finite number

of positive monads bundles on favourable CICYs and provide a complete classification.

Second, we will develop algorithms to calculate the complete particle spectrum of all such

monads and apply these methods to carry out a statistical analysis and identify promising

particle physics models. Finally, we perform a number of checks for the stability of pos-

itive monad bundles. A systematic proof of stability will be presented in the companion

paper [46].
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The plan of the paper is as follows. In sections 2, 3 and 4 we briefly review some

general facts about heterotic model building, complete intersection Calabi-Yau manifolds

and the monad construction, respectively. Section 5 summarises the various physical and

mathematical constraints on positive monads and why the number of such monads is finite;

we then present a complete classification. Some non-trivial checks for the stability of these

bundles are carried out in section 6. Computation of the particle spectrum is discussed in

section 7, before we conclude in section 8. To simplify the discussion in the main body of

the paper, many of the underlying mathematical methods and technical results have been

collected in appendices. Appendix A summarises our notation and conventions throughout

the paper. In appendix B we review some mathematical methods and formulae which

are essential for our calculations. Appendix C collects technical results on CICYs, most of

them well-known, some, such as the identification of redundancies in the CICY list, new.

2. Heterotic Calabi-Yau model building

To set the scene, we start by briefly reviewing the basics facts on E8×E8 heterotic Calabi-

Yau model building. For a more complete discussion see for example [8 – 10, 12].

A heterotic Calabi-Yau model is specified by four pieces of data, a Calabi-Yau manifolds

X, the observable and hidden holomorphic vector bundles V and Ṽ on X, each with a

structure group contained in E8 and a holomorphic curve C ⊂ X with associated homology

class W = [C] ∈ H2(X, Z). Physically, the curve C is wrapped by five-branes stretching

across the four-dimensional uncompactified space-time. While models without five-branes

are of course possible we would like to maintain a general viewpoint and include this

possibility. On this data three physical constraints have to be imposed.

• Anomaly cancellation: Anomaly cancellation in the heterotic string imposes a topo-

logical condition which relates the Calabi-Yau manifold X, the two vector bundles

and the five-brane class W . For the case of bundles V and Ṽ with c1(V ) = c1(Ṽ ) = 0

it can be written as

c2(TX) − c2(V ) − c2(Ṽ ) = W . (2.1)

• Effectiveness: To ensure four-dimensional N = 1 supersymmetry the five-brane has

to wrap a holomorphic curve. Hence, the five-brane class W must be chosen such

that it indeed has a holomorphic curve representative C, with W = [C]. Classes

W ∈ H2(X, Z) with this property are called effective.

• Stability: The Donaldson-Uhlenbeck-Yau theorem [11] guarantees the existence of a

connection satisfying the hermitian Yang-Mills equations (and, hence, preserving N =

1 supersymmetry) on a holomorphic vector bundle, provided this bundle is (poly)-

stable. Hence, both V and Ṽ must be (poly)-stable holomorphic vector bundles on X.

Since the notion of stability of a vector bundle is perhaps not overly familiar it is worth

providing a definition. In this paper, we will not be concerned with poly-stability but only
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with the slightly stronger condition of stability. To define this condition, one needs to

introduce the slope of a bundle (or coherent sheaf) V by

µ(V ) ≡
1

rk(V )

∫

X

c1(V ) ∧ J ∧ J , (2.2)

where J is the Kähler form on X. Then, a bundle V is called stable if µ(F) < µ(V ) for

any coherent sub-sheaf F ⊂ V with 0 < rk(F) < rk(V ).

Within the above set-up we will make a number of standard model-building choices.

We are mostly interested in the observable sector and for the associated vector bundle V

we require a structure group G = SU(n), where n = 3, 4, 5. This means that the rank of

V should be rk(V ) = n = 3, 4, 5 and, in order to have a special unitary rather than just a

unitary structure group, we need

c1(V ) = 0 . (2.3)

This class of bundles also enjoy nice properties with regard to stability. Examining (2.2),

we see that an SU(n) bundle is stable if and only if all its proper sub-sheafs have strictly

negative slope. An immediate consequence of stability of V is that H0(X,V ) vanishes:1

Another useful property is that a bundle V is stable if and only if its dual V ⋆ is stable [23,

27]. Thus, H0(X,V ⋆) also vanishes for our bundles. In summary, for stable bundles V we

necessarily have

H0(X,V ) = H0(X,V ⋆) = 0 . (2.4)

In fact (2.4) is only the first of a set of vanishing conditions (see ref. [12]): if an SU(n)

bundle V is stable, it is further true that

H0(X,∧pV ) = 0 ∀ p = 1, . . . , rk(V ) − 1 . (2.5)

Note that since for SU(n) bundles, ∧pV ≃ ∧qV ⋆ for all p+q = n = rk(V ) (cf. eq.(B.4)), (2.5)

is equivalent to saying that H0(X,∧pV ⋆) = 0 for p = 1, . . . , rk(V ) − 1.

The definition of stability involves all coherent sub-sheafs of a given bundle and is,

therefore, typically not easy to prove. In this paper, we will be content with performing

a “check” for stability by verifying the necessary and highly non-trivial (but generally not

sufficient) conditions (2.5). A full stability proof of the monad bundles considered in this

paper will appear in ref. [46].

Of course, we have to make sure that there exist a solution to the anomaly condi-

tion (2.1). An effective way to guarantee this which does not require searching for suitable

hidden bundles Ṽ is to demand that

c2(TX) − c2(V ) is an effective class on X . (2.6)

1This ensues from the following simple argument. Since if H0(X, V ) = H0(X, V ⊗O⋆
X) = homX(O, V ) 6=

0, then OX is a proper sub-line-bundle of V . However, c1(OX) = 0 and rk(OX) = 1 so µ(OX) = 0 and not

strictly negative, whereby making OX a proper de-stablising subsheaf and V would be unstable. Similarly,

H0(X, V ⋆) = 0.
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In this case, both the anomaly and effectiveness conditions are satisfied2 for a trivial hidden

bundle Ṽ and a five-brane class W = c2(TX) − c2(V ).

The observable low-energy particle content from such a model is summarized in table 1.

For the three choices of structure group G = SU(3),SU(4) or SU(5) one obtains low-energy

GUTs with gauge group H = E6, SO(10) or SU(5), respectively. The representations of

H which arise in the effective four-dimensional theory are obtained by decomposing the

248 adjoint representation of E8 under G×H. The number of matter fields in the various

representations is given by the dimension h1(X,U) of the bundle cohomology groups, where

U = V, V ⋆,∧2V,∧2V ⋆, V ⊗ V ⋆, as indicated in table 1. A particularly useful quantity is

the index ind(V ) ≡ h0(X,V ) − h1(X,V ) + h2(X,V ) − h3(X,V ) of a bundle V . A stable

bundle V satisfies eq. (2.4) and, hence, the index equals ind(V ) = −h1(X,V ) + h2(X,V ).

Comparing with table 1, this is precisely the chiral asymmetry, that is the difference of

the number of anti-families and families. From the Atiyah-Singer index theorem it can be

computed in terms of the third Chern class c3(V ) of the bundle V as

ind(V ) = −h1(X,V ) + h2(X,V ) =
1

2

∫

X

c3(V ) . (2.7)

Provided that H0(X,Λ2V ) = H0(X,Λ2V ⋆) = 0, as will indeed be the case for our bundles

and will be explicitly checked later on, the index theorem applied to Λ2V together with

the relation c3(Λ
2V ) = (n − 4)c3(V ) (see the appendix of ref. [12]) leads to

(n − 4) ind(V ) = −h1(X,∧2V ) + h1(X,∧2V ⋆) . (2.8)

This result will be useful for the SU(5) case and it implies that the chiral asymmetry

between 5̄ and 5 representations is the same as the one between 10 and 1̄0. Hence, the

chiral part of the spectrum always comes in pairs of 10 and 5 (or 10 and 5), that is in

complete SU(5) families (or anti-families).

For a realistic model the GUT group H will have to be eventually broken to the

standard model group. This is usually accomplished by dividing the Calabi-Yau manifold

X by a freely-acting discrete symmetry Γ and then introducing Wilson lines on the quotient

space X/Γ. In this paper, we will not carry this step out explicitly. However, when

we analyse the properties of our models later on we will impose an important physical

constraint which follows from this construction. Assuming that the bundle V descends to

the quotient space X/Γ the “downstairs” chiral asymmetry is given by ind(V )/|Γ|, where

|Γ| is the order of the discrete symmetry group. Clearly, the downstairs chiral asymmetry

should be three, so we should require that

ind(V ) is divisible by 3 . (2.9)

Assuming this is the case, the order of the discrete group Γ one needs is given by |Γ| =

ind(V )/3. The Calabi-Yau manifold X can only be quotiented by such a group if the Euler

2Of course, there may be other choices which involve a non-trivial hidden bundle Ṽ . Since we are mostly

interested in the observable sector at this stage the important point for now is the existence of a viable

hidden sector.
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G × H Breaking Pattern: 248 → Particle Spectrum

SU(3) × E6 (1,78) ⊕ (3,27) ⊕ (3,27) ⊕ (8,1)

n27 = h1(X,V )

n27 = h1(X,V ⋆)=h2(X,V )

n1 = h1(X,V ⊗ V ⋆)

SU(4)×SO(10) (1,45) ⊕ (4,16) ⊕ (4,16) ⊕ (6,10) ⊕ (15,1)

n16 = h1(X,V )

n16 = h1(X,V ⋆)=h2(X,V )

n10 = h1(X,∧2V )

n1 = h1(X,V ⊗ V ⋆)

SU(5) × SU(5) (1,24)⊕(5,10)⊕(5,10)⊕(10,5)⊕(10,5)⊕(24,1)

n10 = h1(X,V )

n10 = h1(X,V ⋆)=h2(V )

n5 = h1(X,∧2V ⋆)

n5 = h1(X,∧2V )

n1 = h1(X,V ⊗ V ⋆)

Table 1: A vector bundle V with structure group G can break the E8 gauge group of the heterotic

string into a GUT group H . The low-energy representation are found from the branching of the

248 adjoint of E8 under G×H and the low-energy spectrum is obtained by computing the indicated

bundle cohomology groups.

number χ(X) is divisible by its order |Γ|. Hence, in addition we demand that

χ(X) is divisible by ind(V )/3 (2.10)

These two conditions are clearly necessary for successful Wilson line breaking to a model

with three families but by no means sufficient. Nevertheless, we will see that they already

impose strong constraints on monad bundles.

3. Complete intersection Calabi-Yau threefolds

To begin our construction of vector bundles for heterotic models, we first discuss the rel-

evant class of compact Calabi-Yau manifolds. Ever since the realization that Calabi-Yau

three-folds played a central role in superstring compactification [8], constructions of so-

called “complete intersection Calabi-Yaus” (CICYs) [2 – 7] have been a topic of interest.

Indeed, this method of Calabi-Yau construction was used in one of the first attempts to

systematically study families of Calabi-Yau manifolds. Subsequent work, especially in light

of mirror symmetry, was carried out in explicit mathematical detail [4, 6, 7, 29] for half a

decade, culminating in the pedagogical text [30] on the subject. The manifolds in [1], used

to illustrate a new algorithmic approach in heterotic compactification, are special cases of

these CICYs.

Unfortunately, much of the original data was stored on computer media, such as mag-

netic tapes at CERN, which have been rendered obsolete by progress. Partial results,

including, luckily, the list of the CICY threefolds itself, can be found on the Calabi-Yau

Homepage [31]. In this section, we shall resurrect some of the useful facts concerning the
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CICY threefolds, which will be of importance to our bundle constructions later. We will

present only the essentials, leaving most of the details to appendix C.

3.1 Configuration matrices and classification

We are interested in manifolds X which can be described as algebraic varieties, that is,

as intersections of the zero loci of K polynomials {pj}j=1,...,K in an ambient space A. For

our purpose, we will consider ambient spaces A = P
n1 × . . . × P

nm given by a product of

m ordinary projective spaces with dimensions nr. We denote the projective coordinates of

each factor P
nr by x(r) = [x

(r)
0 : x

(r)
1 : . . . : x

(r)
nr ], its Kähler form by Jr and the kth power

of the hyperplane bundle by OPnr (k). The Kähler forms are normalised such that

∫

P nr

Jnr
r = 1 . (3.1)

The manifold X is called a complete intersection if the dimension of X is equal the di-

mension of A minus the number of polynomials. This is, in a sense, the optimal way in

which polynomials can intersect. To obtain threefolds X from complete intersections we

then need
m
∑

r=1

nr − K = 3 . (3.2)

Each of the defining homogeneous polynomials pj can be characterised by its multi-degree

qj = (q1
j , . . . , q

m
j ), where qr

j specifies the degree of pj in the coordinates x(r) of the factor

P
nr in A. A convenient way to encode this information is by a configuration matrix













P
n1 q1

1 q1
2 . . . q1

K

P
n2 q2

1 q2
2 . . . q2

K
...

...
...

. . .
...

P
nm qm

1 qm
2 . . . qm

K













m×K

. (3.3)

Note that the jth column of this matrix contains the multi-degree of the polynomial pj. In

order that the resulting manifold be Calabi-Yau, the condition

K
∑

j=1

qr
j = nr + 1 ∀r = 1, . . . ,m (3.4)

needs to imposed (essentially to guarantee that c1(TX) vanishes). Henceforth, a CICY

shall mean a Calabi-Yau threefold, specified by the configuration matrix (3.3), satisfying

the conditions (3.2) and (3.4). In fact, the condition (3.4) even obviates the need for the

first column P
n1 . . . P

nm in the configuration matrix. Subsequently, we will frequently need

the normal bundle N of X in A which is given by

N =

K
⊕

j=1

OA(qj) . (3.5)

– 7 –
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Here and in the following we employ the short-hand notation OA(k) = OPn1 (k1) ⊗ · · · ⊗

OPnr (kr) for line bundles on the ambient space A.

As an archetypal example, the famous quintic in P
4 is simply denoted as “[4|5]”,

or, even more succinctly, as “[5]”. One might immediately ask how many possible non-

isomorphic (one obvious isomorphism being row and column permutations) configurations

could there be. This question was nicely settled in [2, 6] and the number is, remarkably,

finite. A total of 7890 is found and can be accessed at [31]. This was the first large data-set

of Calabi-Yau manifolds (cf. [21]).

We have compiled an electronic list of these CICYs which contains all the essential

information including configuration matrices, Euler numbers χ(X), second Chern classes

c2(TX), Hodge numbers h1,1(X) and h2,1(X) and allows for easy calculation of triple

intersection numbers. It also contains previously unknown information, in particular about

redundancies within the CICY list. This data underlies many of the subsequent calculations

for monad bundles on CICYs. For more details on this “legacy” subject see appendix C.

3.2 Favourable configurations

Our choice of complete intersection Calabi-Yau manifolds is motivated largely by the ex-

plicit and relatively simple nature of the constructions. Perhaps the most valuable advan-

tage of the presence of the ambient space A is the existence of relatively straightforward

methods to identify discrete symmetries, a crucial step for the implementation of Wil-

son line breaking. To take maximal advantage of the presence of the ambient space we

will focus on CICYs for which this explicit embedding is particularly useful. For some

CICYs, the second cohomology H2(X) is not entirely spanned by the restrictions of the

ambient space Kähler forms Jr. For example, in the case of the well-known Tian-Yau

manifold, X =

[

3

3

∣

∣

∣

∣

∣

3 0 1

0 3 1

]

, there are two Kähler forms descending from the two P
3’s, but

h1,1(X) = 14. Here, we would like to focus on CICYs X for which the second cohomology is

entirely spanned by the ambient space Kähler forms and which are, hence, characterised by

h1,1(X) = m = # of P
n’s.

We shall call manifolds with this property favourable. Such favourable CICYs offer a num-

ber of considerable practical advantages. There are 5 manifolds with h1,1(X) = m = 1.

These are also referred to as cyclic CICYs and they constitute the subject of ref. [1].

The Kähler cone, that is the set of allowed Kähler forms J on X, is simply given by

{J = trJr | t
r ≥ 0}, where tr are the Kähler moduli. Further, the set of all line bundles on

X, the Picard group Pic(X), is isomorphic to Z
m, so line bundles on X can be characterised

by an integer vector k = (k1, . . . , km). We denote these line bundles by OX(k) and they

can be obtained by restricting their ambient space counterparts OA(k) to X.

We can also introduce a dual basis {νr} of H4(X, Z), satisfying

∫

X

νr ∧ Js = δr
s , (3.6)
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and, via Poincaré duality H4(X, Z) ≃ H2(X, Z), we can use this basis to describe the second

integer homology of X. The effective classes W ∈ H2(X, Z) then correspond precisely to

the positive integer linear combinations of νr, that is wrν
r with wr ≥ 0. This property

makes checking our version of the anomaly cancellation condition (2.6) very simple. If we

expand second Chern classes in the basis {νr}, writing c2(U) = c2r(U)νr for any bundle

U , then the condition (2.6) simply turns into the inequalities

c2r(V ) ≤ c2r(TX) ∀ r = 1, . . . ,m. (3.7)

Details on the computation of Chern classes on CICYs are given in appendix C.

Scanning through the CICY data, we find that there is a total of 4515 CICYs which

are favourable. This is still a large dataset and we shall henceforth restrict our attention

to these.

3.3 Line bundles on CICYs

As we will see line bundles on CICYs are the main building blocks of the monad bundles

considered in this paper, so we need to know their detailed properties. In particular we

need to be able to fully determine the cohomology of line bundles on CICYs. We will return

to this problem shortly after briefly reviewing a few more elementary properties. For an

ambient space A with m projective factors, we consider a generic line bundle L = OX(k)

on a CICY X, where k = (k1, . . . , km) is an m-dimensional integer vector. The Chern

characters of such a line bundle are given by

ch1(L) = c1(L) = krJr

ch2(L) = 1
2krksJr ∧ Js

ch3(L) = 1
6krksktJr ∧ Js ∧ Jt ,

(3.8)

with implicit summation in r, s, t = 1, . . . ,m. Note that every line bundle on a CY 3-

fold is uniquely classified by its first Chern class, as can be seen explicitly from the above

expression for ch1. The dual of the line bundle L is simply given by L⋆ = OX(−k). Using

the Atiyah-Singer index theorem, the index of L can be written as

ind(L) ≡
3
∑

q=0

(−1)qhq(X,L) =

∫

X

ch(L) ∧ Td(X) =

∫

X

[

ch3(L) +
1

12
ch2(TX) ∧ c1(L)

]

=
1

6

(

drstk
rkskt +

1

2
krc2r(TX)

)

. (3.9)

A special class of line bundles are the so-called positive line bundles which, in the

present case, are the line bundles L = OX(k) with all kr > 0. The Kodaira vanishing

theorem (B.8) applies to such positive bundles and (given the canonical bundle KX of a

Calabi-Yau manifold is trivial) it implies that hq(X,L) = 0 for all q 6= 0. This means

that h0(X,L) is the only non-vanishing cohomology and it can, hence, be easily calculated

from the index (3.9) since h0(X,L) = ind(L). The situation is just as simple for negative

line bundles L, that is line bundles for which L⋆ is positive. In our case, the negative line

bundles L = OX(k) are of course the ones with all kr < 0. Applying the Kodaira vanishing
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theorem to L⋆ = O(−k) and then using Serre duality it follows that h3(X,L) is the only

non-vanishing cohomology of a negative line bundle. Again, it can be computed from the

index using h3(X,L) = −ind(V ). These result for positive and negative line bundles can

also be checked using the techniques of spectral sequences. In this case, the dimension of

the single non-zero cohomology can be computed without explicitly knowledge of the Leray

maps di between cohomologies.

One more general statement can be made. It turns out that semi-positive line bundles,

that is line bundles L = OX(k), where kr ≥ 0 for all r, always have at least one section, so

h0(X,L) > 0. One might be tempted to conclude that the line bundles with sections are

precisely the semi-positive ones. While this is indeed the case for some CICYs it is by no

means always true and for some CICYs the class of line bundles with a section is genuinely

larger than the class of semi-positive line bundles.

Further quantitative statements about the cohomology of line bundles L = O(k) con-

taining “mixed” or zero entries kr are not so easily obtained. For a general line bundle with

mixed sign or zero entries, computing the dimensions hq(X,OX (k)) does require explicit

information about the dimensions of kernels and ranks of the Leray maps di. Fortunately,

this information can be obtained based on a computational variation of the Bott-Borel-Weil

theorem. In this way, we are able to calculate all line bundle cohomologies on favourable

CICYs explicitly. We do not particularly require this computation in the present paper

and will defer a full discussion on the matter to ref. [46]. The general result involves a

large number of case distinctions, analogous to but significantly more complex than the

Bott formula (B.6) for line bundle cohomology over P
n.

As an illustration, we provide a “generalised Bott formula” for mixed line bundles of

the form OX(−k,m) with k ≥ 1, and m ≥ 0 on the manifold X =

[

1

3

∣

∣

∣

∣

∣

2

4

]

. We find that

hq(X,OX (−k,m)) =











(k + 1)
(

m
3

)

− (k − 1)
(

m+3
3

)

q = 0 k < (1+2m)(6+m+m2)
3(2+3m(1−m))

(k − 1)
(

m+3
3

)

− (k + 1)
(

m
3

)

q = 1 k > (1+2m)(6+m+m2)
3(2+3m(1−m))

0 otherwise

. (3.10)

where
(

n
m

)

is the usual binomial coefficient with the convention that
( 0
m

)

= 1.

It should be clear from the above example that the explicit formulae for mixed line bun-

dle cohomology are complicated and, in practice, have to be implemented as a computer

program. The outline of our algorithm for computer implementation will be presented

in [46].

4. The monad construction on CICYs

As was discussed in ref. [1], large classes of vector bundles can be constructed over projective

varieties using a variant of Horrock’s monad construction [24 – 26]. The monad-bundles

have been used extensively in string compactification throughout the years [22, 32 – 36].

Vector bundles defined through the monad short exact sequences can be thought of as

kernels of maps between direct sums of line bundles. For reviews of this construction and
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some of its applications, see ref. [27, 28, 34]. The monad bundles V considered in this

paper are defined through the short exact sequence

0 → V → B
f

−→ C → 0 , where

B =

rB
⊕

i=1

OX(bi) , C =

rC
⊕

j=1

OX(cj) (4.1)

are sums of line bundles with ranks rB and rC , respectively. From the exactness of (4.1),

it follows that the bundle V is defined as

V = ker(f) . (4.2)

The rank n of V is easily seen, by exactness of (4.1), to be

n = rk(V ) = rB − rC . (4.3)

Because the Calabi-Yau manifolds discussed in this work are defined as complete intersec-

tion hypersurfaces in a product of projective spaces, we can write a short exact sequence

analogous to (4.1) but over the ambient space, A.

0 → V → B
f̃

−→ C → 0 , where

B =

rB
⊕

i=1

OA(bi) , C =

rC
⊕

j=1

OA(cj) . (4.4)

Here, the map f̃ is a matrix whose entries are homogeneous polynomials of (multi-)degree

cj − bi. The sequence (4.4) defines a coherent sheaf V on A whose restriction to X is V

(and additionally the map f can be viewed as the restriction of f̃).

A number of mathematical constraints should be imposed on the above monad construction.

Bundleness. It is not a priori obvious that the exact sequence (4.1) indeed defines a

bundle rather than a coherent sheaf. However, thanks to a theorem of Fulton and Lazars-

feld [37] this is the case provided two conditions are satisfied (see also [1]). First, all line

bundles in C should be greater or equal than all line bundles in B. By this we mean that

cr
j ≥ br

i for all r, i and j. Second, the map f : B → C should be sufficiently generic.3

Phrased in terms of ambient space language this means that the map f̃ : B → C should

be made up from sufficiently generic homogeneous polynomials of degree cj − bi. We will

3The actual condition of Fulton and Lazarfeld’s theorem, apart from genericity of f , is that C⋆ ⊗ B is

globally generated so has at least rBrC sections. This is indeed the case if cr
j ≥ br

i for all r, i and j since, in

this case, the line bundles OX(cj −bi) which make up C⋆ ⊗B are semi-positive so have at least one section

each. On some CICYs the line bundles with sections extend beyond the semi-positive ones, as discussed

earlier, and for those CICYs one can likely allow monads where some of the entries in C are smaller than

the ones in B and still preserve “bundleness” of V . In the present paper, we will not pursue this very

case-dependent possibility further.

– 11 –



J
H
E
P
0
7
(
2
0
0
8
)
1
0
4

henceforth require these two conditions. An immediate consequence of V being a bundle

is that (4.1) can be dualized to the short exact sequence

0 → C⋆ fT

−→ B⋆ → V ⋆ → 0 , (4.5)

so that the dual bundle V ⋆ is given by

V ⋆ = coker(fT ) . (4.6)

Non-triviliaty. The above constraint on the integers cr
j and br

i can be slightly strength-

ened. Suppose that a monad bundle V is defined by the short exact sequence

0 → V → B ⊕ R
f ′

−→ C ⊕ R → 0 , (4.7)

where the repeated summand R is a line bundle or direct sum of line bundles. The so-

defined bundle V is indeed equivalent to the one defined by the sequence (4.1), so the

common summand R is, in fact, irrelevant.4 To exclude common line bundles in B and C

we should demand that all line bundles in C are strictly greater than all line bundles in B.

By this we mean that cr
j ≥ br

i for all r, i and j and, in addition, that for all i and j strict

inequality, cr
j > br

i , holds for at least one r (which can depend on i and j).

Positivity. We require that all line bundles in B and C are positive, that is br
i > 0 and

cr
j > 0 for all i, j and r. Monads discussed in the physics literature [22, 32 – 35] have

typically been of this type and we will refer to them as positive monads. The reasons for

this constraint are mainly of a practical nature. We have seen in our discussion of line

bundles on CICYs that the cohomology of positive line bundles is particularly simple and

easy to calculate from the index theorem. This fact significantly simplifies the analysis of

positive monads.

Furthermore, experience seems to indicate that non-positive bundles are “more likely”

to be unstable. As an extreme case, one can easily show that monads constructed only from

negative line bundles are unstable because they explicitly have non-vanishing H0(X,V ⋆).

Of course we are not implying that all non-positive monads are unstable. In fact, in a

forthcoming paper [45] we will show that allowing zero entries can still be consistent with

stability. However, from the point of view of stability, starting with positive monads seems

the safest bet, and we will focus on this class in the present paper.

In addition to the constraints of a more mathematical nature above we should consider

physical constraints. To formulate them we need explicit expressions for the Chern classes

of monad bundles. One finds

rk(V ) = rB − rC = n ,

cr
1(V ) =

rB
∑

i=1

br
i −

rC
∑

j=1

cr
j ,

4This follows directly from the Snake Lemma [23], using the obvious injections of B, C into B ⊕ R and

C ⊕ R.
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c2r(V =
1

2
drst





rC
∑

j=1

cs
jc

t
j −

rB
∑

i=1

bs
i b

t
i



 , (4.8)

c3(V ) =
1

3
drst





rB
∑

i=1

br
i b

s
i b

t
i −

rC
∑

j=1

cr
jc

s
jc

t
j



 ,

where drst are the triple intersection numbers (C.2) on X and the relations for c2r(V ) and

c3(V ) have been simplified assuming that cr
1(V ) = 0. Then we need to impose two physics

constraints.

Correct structure group. To have bundles with structure group SU(n) where n =

3, 4, 5 we first of all need that n = rB − rC = 3, 4, 5. In addition, the first Chern class of V

needs to vanish which, from the second eq. (4.8), can be expressed as

Sr :=

rC+n
∑

i=1

br
i =

rC
∑

j=1

cr
j ∀r = 1, . . . , k . (4.9)

We have defined the quantities Sr which represent the first Chern classes of B and C and

will be useful for the classification of positive monads below.

Anomaly cancellation/effectiveness. As we have seen this condition can be stated in

the simple form (3.7). Inserting the above expression for the second Chern class gives

drst





rC
∑

j=1

cs
jc

t
j −

rB
∑

i=1

bs
i b

t
i



 ≤ 2c2r(TX) ∀r . (4.10)

In addition, we should of course prove stability of positive monads, a task which will

be systematically dealt with in ref. [46]. This completes the set-up of monads bundles. To

summarise, we will consider monad bundles V of rank 3, 4 or 5, defined by the short exact

sequence (4.1) with positive line bundles only. In addition, all line bundles in C must be

strictly greater than all line bundles in B and the two constraints (4.9) and (4.10) must be

satisfied.

5. Classification of positive monads on CICYs

An obvious question is whether the class of monads defined in the previous section is finite.

In this section, we show that this is indeed the case and subsequently classify all such

monads.

We start by stating the classification problem in a more formal way. For any favourable

CICY manifold X with second Chern class c2r(TX) and triple intersection numbers drst,

defined in a product of m projective spaces, and for any n = 3, 4, 5, we wish to find all

sets of integers br
i and cr

j , where r = 1, . . . ,m, i = 1, . . . , rB = rC + n and j = 1, . . . , rC
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satisfying the conditions

1. br
i ≥ 1 , cr

j ≥ 1 , ∀i, j, r;

2. cr
j ≥ br

j , ∀i, j, r;

3. ∀i, j there exists at least one r such that cr
j > br

i ;

4.

rB
∑

i=1

br
i =

rC
∑

j=1

cr
j = Sr , ∀r; (5.1)

5. drst





rC
∑

j=1

cs
jc

t
j −

rB
∑

i=1

bs
i b

t
i



 ≤ 2c2r(TX) ∀r .

Our first task is to show that this defines a finite class. Although all that is involved are

simple manipulations of inequalities it is not complete obvious at first which approach to

take. We start by defining the maxima br
max = maxi{b

r
i }, minima cr

min = minj{c
r
j} and their

differences θr = cr
min − br

max ≥ 0 which are of course positive for all r. Then we can write

br
i = br

max − T r
i , cr

j = cr
min + Dr

j , (5.2)

where T r
i and Dr

j are the deviations from the maximum and minimum values. It is also

useful to introduce the sums

T r =

rB
∑

i=1

T r
i , Dr =

rC
∑

j=1

Dr
j (5.3)

of these deviations. Given theses definitions, it is easy to see that

Sr = br
maxrB − T r , Sr = cr

minrC + Dr . (5.4)

Subtracting these two equations and using rB = rC + n it follows that

θrrC + (Dr + T r) = nbr
max . (5.5)

We will use this identity shortly. Next, from the definition (4.9), and since all cj
s ≥ 1, we

obtain the two inequalities

Sr ≥

rC
∑

j=1

I
r = rCI

r , Sr ≤

rB
∑

i=1

br
max = br

maxrB , ∀ r , (5.6)

where Is is a vector with all entries being 1. After this preparation, we come to the key
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part of the argument which involves working out the consequences of condition 5 in (5.1).

2c2r(TX) ≥ drst

(

rC
∑

j=1
cs
jc

t
j −

rB
∑

i=1
bs
i b

t
i

)

= drst

(

rC
∑

j=1
(cs

min + Ds
j)c

t
j −

rB
∑

i=1
(bs

max − T s
i )bt

i

)

inserting (5.2)

= drst

(

(cs
min − bs

max)S
t +

rC
∑

j=1
Ds

jc
t
j +

rB
∑

i=1
T s

i bt
i

)

using (4.9)

≥ drst

(

θsSt + (Ds + T s)It

)

since ct
j, b

t
i ≥ 1 ,using (5.3)

≥ drst

(

θs(rCI
t) + (Ds + T s)It

)

by first inequality (5.6)

= drst

(

nbs
maxI

t
)

from (5.5)

≥ n
rB

drst

(

Ss
I
t
)

by second inequality

(5.7)

From the second last line in the above chain of inequalities, we can also express this result

as a bound in the variables br
max (the maximum entries the bundle B can have in each

projective space), resulting in

2c2r(TX) ≥ n
∑

s,t

drstb
s
max . (5.8)

It turns out that the matrices
∑

t drst are always non-singular, so this equation provides

an upper bound for br
max. Moreover, since each br

max ∈ Z≥1, and since the matrix n
∑

t drst

has entries in Z≥0, eq. (5.8) may not have solutions for all manifolds. In fact, of the 4515

favourable CICYs, eq. (5.8) immediately eliminates all but 63 which include the 5 cyclic

ones studied in ref. [1]. One finds that the values for br
max are very small indeed and never

exceed 6.

So far, we have bounded the maximal entries of the bundle B. What about rB, the

rank of B? It turns out there are various ways to derive an upper bound on rB . First note

that, from the third condition in (5.1), for all j ∈ {1, . . . , rC}, there exists a σ ∈ {1, . . . ,m},

call it σ(j), such that

cr
j − br

max ≥ δrσ(j) . (5.9)

Introduce

νr =

rC
∑

j=1

δrσ(j) , (5.10)

the number of line bundles in C which are bigger than the ones in B due to the r-th entry.

Since all line bundles in C are bigger than the ones in B it follows that

m
∑

r=1

νr = rC = rB + n . (5.11)

We conclude that

rBbr
max ≥

rB
∑

i=1

br
i =

rC
∑

j=1

cr
j ≥

rC
∑

j=1

(br
max + δrσ(j)) = rcb

r
max + νr (5.12)
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and, hence, that nbr
max ≥ νr. Summing this result over r one easily finds that

rB ≤ n

(

1 +
m
∑

r=1

br
max

)

. (5.13)

Since we have already bounded br
max (independently of rB) this provides an upper bound

for rB. This shows that our class of bundles is indeed finite. While the above bound is

simple, for the practical purpose of classifying all bundles it often turns out to be too weak,

and requires computationally expensive scanning of monads with large rB and, hence, a

large number of integer entries. Based on eq. (5.13) alone, a classification on a desktop

machine is likely impossible. Fortunately, one can derive other constraints on rB which in

many cases turn out to be stronger. Using nbr
max ≥ νr in eq. (5.8) leads to

∑

r,s

drstν
t ≤ 2c2r(TX) . (5.14)

For each CICY, one can find all integer solutions (νr) (subject to the constraint νr ≥ 0,

of course) to this equation and then calculate the maximal possible value for rB from

eq. (5.11). Finally, starting again from condition 5 of (5.1) we find

2c2r(TX) ≥ drst

[

rC
∑

j=1
cs
jc

t
j −

rB
∑

i=1
bs
i b

t
i

]

≥ drst

[

rC
∑

j=1
(bs

max + δsσ(j))(bt
max + δtσ(j)) −

rB
∑

i=1
bs
i b

t
i

]

= drst

[

rC
∑

j=1
bs
maxb

t
max −

rB
∑

i=1
bs
i b

t
i + 2νsbt

max + δt
sν

t

]

≥ drst

[

−nbs
maxb

t
max + 2νsbt

max + δt
sν

t
]

.

(5.15)

Rewriting this as an system of linear inequalities for νs, we have that

∑

s

(

2
∑

t

drstb
t
max + drss

)

νs ≤ 2c2r(TX) + ndrstb
s
maxb

t
max . (5.16)

Again, this equation can be solved for all non-negative integers νr since bmax
s is bounded

from (5.8) and, subsequently, we can compute the maximal rB from eq. (5.11). In practice,

we evaluate all three bounds (5.13), (5.14), (5.16) for every CICY and use the minimum

value obtained. In this way we find maximal values for rB ranging from 8 to 22 depending

on the CICY.

The explicit classification is now simply a matter of computer search. For each of the

63 CICYs with solutions to the inequality (5.8) we scan over all allowed values of n, rB

and over all values for Sr subject to the last inequality in (5.7). For each fixed set of

these quantities we then generate all multi-partitions of entries br
i and cr

j eliminating, of

course, trivial redundancies due to permutations. Upon performing this scan, we find that

positive monad bundles only exist over 36 favourable CICYs (out of the 63 which passed

the initial test). These 36 manifolds, together with the number of monad bundles over

them, are listed in table 2.
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Config No.Bundles Config No.Bundles Config No.Bundles Config No.Bundles

[5] (20, 14, 9) [3 3] (5, 3, 2) [4 2] (7, 5, 3) [3 2 2] (3, 2, 1)

[2 2 2 2] (2, 1, 0)
[

2

4

]

(611, 308, 56)
[

3

3

]

(62, 43, 14)
[

0 2

2 3

]

(80, 12, 0)
[

0 2

3 2

]

(12, 5, 0) (4)
[

0 2

4 1

]

(126, 17, 0)
[

1 1

3 2

]

(15, 8, 0)
[

1 1

4 1

]

(153, 35, 19)
[

2 1

1 3

]

(3, 0, 0)
[

2 1

2 2

]

(5, 0, 0)
[

2 1

3 1

]

(13, 2, 0) (2)
[

0 0 2

2 2 2

]

(5, 0, 0)

(3)
[

0 0 2

3 2 1

]

(5, 0, 0) (2)
[

0 1 1

2 2 2

]

(5, 0, 0)
[

0 1 1

2 3 1

]

(12, 5, 0)
[

0 1 1

3 2 1

]

(8, 0, 0)

(4)
[

0 1 1

4 1 1

]

(126, 17, 0)
[

0 2 1

2 2 1

]

(2, 0, 0)
[

1 1 1

3 1 1

]

(2, 0, 0)
[

2 1 1

2 1 1

]

(1, 0, 0)
[

0 0 1 1

2 2 2 1

]

(3, 0, 0) (3)
[

0 0 1 1

3 2 1 1

]

(5, 0, 0)

[

2

2

3

]

(553, 232, 0)

[

0 2

1 2

1 2

]

(8, 0, 0)
[

1 1

0 2

1 3

]

(74, 0, 0) (1)

[

1 1

0 2

2 2

]

(9, 0, 0)

[

1 1

1 1

1 3

]

(25, 0, 0) (1)

[

1 1

1 1

2 2

]

(9, 0, 0)

[

1 1

1 2

0 3

]

(34, 0, 0)

[

1 1

2 1

2 1

]

(3, 0, 0)

[

1 1 0

1 0 1

3 1 1

]

(9, 0, 0)

[

2

2

2

2

]

(3665, 625, 0)

Table 2: The 36 manifolds which admit positive monads. The No.Bundles column next to each

manifold is a triple, corresponding to the respective numbers of ranks 3,4, and 5 monads. Identical

numbers in brackets to the left of a configuration matrices indicate equivalent configurations as

identified in appendix C.

CICY X B C rk(V )

[

c2(TX)

c2(V )

]

ind(V ) = 1

2
c3(V )









1 2

1 2

1 2

1 2









OX(1, 1, 1, 1)⊕8

OX(5, 1, 1, 1)

⊕OX(1, 5, 1, 1)

⊕OX(1, 1, 5, 1)

⊕OX(1, 1, 1, 5)

4

[

(24, 24, 24, 24)

(24, 24, 24, 24)

]

-64





1 1 1

2 2 1

2 2 1



 OX(1, 1, 1)⊕10

OX(1, 1, 2)⊕3

⊕OX(1, 2, 1)⊕3

⊕OX(4, 1, 1)

3

[

(24, 36, 36)

(24, 36, 36)

]

-69

[

1 2

3 4

]

OX(1, 1)⊕11 OX(6, 1) ⊕OX(1, 2)⊕5 5

[

(24, 44)

(20, 30)

]

-40

[4|5] OX(1)⊕6 OX(2)⊕3 3

[

(50)

(15)

]

-15

Table 3: Some examples from the 7118 positive monads on favourable CICYs.

In total, we find 7118 positive monad bundles. These include the 77 positive monad

bundles on the 5 cyclic CICYs (these are the CICYs with h1,1(X) = 1) found in ref. [1].

Some explicit examples are listed in table 3. Focusing on the different ranks of V considered,

we find 5680 bundles of rank 3, 1334 of rank 4, and 104 of rank 5 on these 36 manifolds.

To get an idea of the distribution, in part (a) of figure 1 we have plotted the number of

monads as a function of the index ind(V ). It seems, at first glance, that the distribution

is roughly Gaussian. For comparison, in part (b) of figure 1, we have plotted the number
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Bundles ind(V ) = 3k
ind(V ) = 3k

and k divides χ(X)

ind(V ) = 3k

|ind(V )| < 40

and k divides χ(X)

rank 3 5680 3091 458 19

rank 4 1334 207 96 2

rank 5 104 52 5 0

Total 7118 3350 559 21

Table 4: The number of positive monad bundles on favourable CICYs. Imposing that the index,

ind(V ), is divisible by 3 reduces the number and requiring, in addition, that ind(V )/3 divides the

Euler number of the corresponding CICY leads to a further reduction.

(a)
-100 -80 -60 -40 -20

250

500

750

1000

1250

1500

(b) -80 -60 -40 -20
0

20

40

60

80

100

120

140

Figure 1: (a) Histogram for the index, ind(V ), of the 7118 positive monads found over 36 favourable

CICYs: the horizontal axis is ind(V ) and the vertical, the number of bundles; (b) the same data

set, but only taking into account monads with ind(V ) = 3k for some positive integer k, such that

k divides the Euler number of the corresponding CICY.
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Figure 2: (a) Histogram for the index, ind(V ), of the positive monads, 5680 of rank 3 (in red),

1334 of rank 4 (in blue), and 104 of rank 5 (in gray), found over 36 favourable CICYs: the horizontal

axis is ind(V ) and the vertical, the number of bundles; (b) the same data set, but only taking into

account monads with ind(V ) = 3k for some positive integer k, such that k divides the Euler number

of the corresponding CICY.

of monads which satisfy the two 3-generation constraints (2.9) and (2.10). The same data,

but split up into the three cases n = 3, 4, 5 for the rank of V , is shown in figure 2. The

total numbers of bundles in all cases has been collected in table 4.
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It is clear from this table that even the two very rudimentary physical constraints (2.9)

and (2.10) lead to a very substantial reduction of the number of viable bundles. If these

two constraints are combined with a “sensible” limit on the index, for example ind(V ) < 40

(assuming that the discrete symmetries one is likely to find are of order ≤ 13), then part (b)

of the figures show that the number of remaining bundles is very small indeed: there are only

21 of these. Remarkably these, perhaps of the most physical interest, only exist on the cyclic

manifolds discussed in [1] as well as the transposes of these configuration matrices (cf. [21]).

6. Stability

In this paper we will prove the set of highly non-trivial vanishing conditions (2.5) to test the

stability of our bundles. These conditions are a generalization of Hoppe’s criterion [47], used

in [1] to prove stability in the case of cyclic Calabi-Yau manifolds. In the cyclic case, the

conditions in (2.5) are sufficient for stability, while for general CICYs, the vanishing of these

cohomologies is necessary, but no longer sufficient. None-the-less, the generalized Hoppe

condition still provides an important check of stability. As mentioned earlier, eq. (2.5) is

equivalent to the same condition but written in terms of the dual bundle, which turns out

to be technically simpler. Hence, in this section we prove that

H0(X,∧pV ⋆) = 0, p = 1, . . . , rk(V ) − 1 . (6.1)

As mentioned previously, the full proof of stability of our bundles will appear in ref. [46].

We shall prove that condition (6.1) is satisfied in two steps. First, we demonstrate

that the vanishing of certain ambient space cohomologies (given in (6.5)) associated to a

Koszul resolution (B.10) guarantee that H0(X,∧pV ⋆) = 0. After specifying these necessary

cohomology groups, as a second step, we will show that they are in fact zero for all positive

monads. This is accomplished by studying an exterior power sequence (B.11) on A. We de-

rive conditions (6.10), (6.12), and (6.15) which hold for all the bundles in our classification.

6.1 Step 1: using the Koszul sequence

Let us begin with the Koszul resolution for ∧pV , which, from eq. (B.10), reads

0 → ∧KN ⋆ ⊗ ∧pV⋆ → ∧K−1N ⋆ ⊗ ∧pV⋆ → . . . → ∧pV⋆ → ∧pV⋆|X → 0 . (6.2)

In the above, K is the co-dimension of the CICY X and ∧pV⋆ is defined on the ambient

product projective space A while ∧pV⋆|X = ∧pV ⋆ lives on X. The normal bundle, N of X

in A has been defined in eq. (3.5).

We can break this long exact sequence into K inter-related short exact ones by intro-

ducing K − 1 (co-)kernels Qi such that

0 → ∧KN ⋆ ⊗ ∧pV⋆ → ∧K−1N ⋆ ⊗ ∧pV⋆ → Q1 → 0

0 → Q1 → ∧K−2N ⋆ ⊗ ∧pV⋆ → Q2 → 0
...

0 → QK−2 → N ⋆ ⊗ ∧pV⋆ → QK−1 → 0

0 → QK−1 → ∧pV⋆ → ∧pV ⋆ → 0

(6.3)
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Now, each of the above short exact sequences induces a long exact sequence in cohomology.

Adopting the convention that Q0 := ∧KN ⋆ ⊗ ∧pV⋆ and QK := ∧pV ⋆ (keeping in mind

that ∧jN ⋆ ≃ OA for j = 0), the j-th long exact sequence takes the form

0 → H0(A, Qj−1) → H0(A,∧K−jN ⋆ ⊗ ∧pV⋆) → H0(A, Qj) →

→ H1(A, Qj−1) → H1(A,∧K−jN ⋆ ⊗ ∧pV⋆) → H1(A, Qj) →
...

→ HK+2(A, Qj−1) → HK+2(A,∧K−jN ⋆ ⊗ ∧pV⋆) → HK+2(A, Qj) →

→ HK+3(A, Qj−1) → HK+3(A,∧K−jN ⋆ ⊗ ∧pV⋆) → HK+3(A, Qj) → 0 .

(6.4)

We have used the fact that A is of dimension K + 3 since X has co-dimension K and

hence the highest cohomology group is K + 3. To ensure vanishing of H0(X,∧pV ⋆) it

suffices to have H0(A,∧pV⋆) and H1(A, QK−1) be zero. The latter vanishes, in turn, if

H1(A,N ⋆⊗∧pV⋆) and H2(A, QK−2) are both zero. Thus arguing inductively, it is sufficient

(though not necessary) for the vanishing of H0(X,∧pV ⋆) that

Hj(A,∧jN ⋆ ⊗ ∧pV⋆) = 0 for j = 0, . . . ,K . (6.5)

Indeed, these constitute K + 1 vanishing conditions. For j > K, ∧jN ⋆ = 0 since N by

definition is rank K and the cohomologies are zero automatically.

6.2 Step 2: using the exterior power sequence

How can we demonstrate that (6.5) is satisfied? We recall the definition (4.4) of the monad

on the ambient space, whose dual is given by

0 → C⋆ → B⋆ → V⋆ → 0 .

The p-th exterior power of V⋆ can be extracted from the exterior-power sequence (B.11),

which here reads

0 → SpC⋆ → Sp−1C⋆ ⊗ B⋆ → . . . → C⋆ ⊗ ∧p−1B⋆ → ∧pB⋆ → ∧pV⋆ → 0 . (6.6)

By Sj we denote the j-th symmetric tensor power. We can tensor this sequence by ∧jN ⋆

for j = 0, . . . ,K. Each of the resulting K + 1 sequences can be broken up into p short

exact ones, by introducing (co-)kernels qj
i , where i = 0, . . . , p − 1 and j = 0, . . . ,K. This

leads to

0 → ∧jN ⋆ ⊗ SpC⋆ → ∧jN ⋆ ⊗ Sp−1C⋆ ⊗ B⋆ → qj
1 → 0

0 → qj
1 → ∧jN ⋆ ⊗ Sp−2C⋆ ⊗ ∧2B⋆ → qj

2 → 0
...

0 → qj
p−2 → ∧jN ⋆ ⊗ C⋆ ⊗ ∧p−1B⋆ → qj

p−1 → 0

0 → qj
p−1 → ∧jN ⋆ ⊗ ∧pB⋆ → ∧jN ⋆ ⊗ ∧pV⋆ → 0 ,

(6.7)

where we have boxed the term whose j-th cohomology group on A needs to vanish.
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Next, we consider the cohomology associated to (6.7). From Kodaira vanishing on A

(eq. (B.9)), a negative bundle L⋆ satisfies the vanishing conditions

Hm(A,L⋆) = 0 unless m = dim(A) = K + 3 . (6.8)

Our bundles B⋆, C⋆ as well as their tensors and powers are of course direct sums of strictly

negative bundles, and hence obey (6.8). Each of the short exact sequences in eq. (6.7)

induces a long exact sequence in cohomology which are intertwined by the (co-)kernels. It

will be helpful to consider (6.7) and its cohomology for each value of p individually. The

results are immediate for the first two cases under consideration.

For p = 1, we quickly see that Hm(A,∧jN ⋆ ⊗∧pV⋆) = 0 for m = 0, . . . ,K +1 as these

are all sandwiched between two vanishing terms, namely Hm(A,∧jN ⋆ ⊗Sp−1C⋆ ⊗B⋆) and

Hm+1(A,∧jN ⋆ ⊗ SpC⋆). Thus (6.5) is automatically satisfied for p = 1. Similarly, for

p = 2, Hm(A,∧jN ⋆ ⊗ ∧pV⋆) = 0 for m = 0, . . . ,K, again satisfying eq. (6.5).

For longer exterior power sequences the result requires a little more analysis. For

p = 3, Hm(A,∧jN ⋆ ⊗ ∧pV⋆) vanishes automatically only for m = 0, . . . ,K − 1, one

short of the upper bound of j required in eq. (6.5). Nevertheless, we find the equivalence

HK(A,∧jN ⋆ ⊗ ∧pV⋆) ≃ HK+2(A, qj
1), and the latter cohomology group resides in the

four-term exact sequence

0 → HK+2(A, qj
1) → HK+3(A,∧jN ⋆ ⊗ S3C⋆)

g
−→ HK+3(A,∧jN ⋆ ⊗ S2C⋆ ⊗ B⋆) → HK+3(A, qj

1) → 0 . (6.9)

The single case which remains to be checked is j = K. It was argued in appendix B of

ref. [1] that on the ambient space, the map g above, induced from the defining map of

the monad (which we recall, by construction, is generic), is also generic. Therefore, if g is

injective, then the requisite term HK+2(A, qj
1) vanishes. Injectivity simply requires that

hK+3(A,∧KN ⋆ ⊗ S3C⋆) ≤ hK+3(A,∧KN ⋆ ⊗ S2C⋆ ⊗ B⋆) . (6.10)

At last, for the final case of p = 4, Hm(A,∧jN ⋆ ⊗ ∧pV⋆) vanishes automatically only

for m = 0, . . . ,K − 2, two short of the upper bound for j in eq. (6.5). However, we have

that HK−1(A,∧jN ⋆ ⊗ ∧pV⋆) ≃ HK+2(A, qj
1) the latter of which resides in a four-term

exact sequence

0 → HK+2(A, qj
1) → HK+3(A,∧jN ⋆ ⊗ S4C⋆)

g1

−→ HK+3(A,∧jN ⋆ ⊗ S3C⋆ ⊗ B⋆) → HK+3(A, qj
1) → 0 ; (6.11)

The relevant case j = K − 1. As before, the map g1 is generic and the requisite term

HK+2(A, qj
1) vanishes if g1 is injective, or if

hK+3(A,∧K−1N ⋆ ⊗ S4C⋆) ≤ hK+3(A,∧K−1N ⋆ ⊗ S3C⋆ ⊗ B⋆) . (6.12)

Similarly, we have that HK(A,∧jN ⋆ ⊗∧pV⋆) ≃ HK+2(A, qj
2) and the latter resides in

0 → HK+2(A, qj
2) → HK+3(A, qj

1)
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g2

−→ HK+3(A,∧jN ⋆ ⊗ S2C⋆ ⊗ ∧2B⋆) → HK+3(A, qj
2) → 0 , (6.13)

where we need to focus on the case j = K. The cohomology HK+3(A, qj
1) again resides in

a four-term exact sequence

0 → HK+2(A, qj
1) → HK+3(A,∧jN ⋆ ⊗ S4C⋆)

h
−→ HK+3(A,∧jN ⋆ ⊗ S3C⋆ ⊗ B⋆) → HK+3(A, qj

1) → 0 . (6.14)

The maps g2 and h are generic, as before. Therefore, the cohomology at the end of

eq. (6.14), HK+3(A, qK
1 ) ≃ coker(h) (which also appears as the second term of (6.13)) has

dimension hK+3(A,∧KN ⋆ ⊗ S3C⋆ ⊗ B⋆) − hK+3(A,∧KN ⋆ ⊗ S4C⋆). For injectivity of g2,

this dimension should not exceed hK+3(A,∧KN ⋆⊗S2C⋆⊗∧2B⋆), so we have the condition

hK+3(A,∧KN ⋆⊗S3C⋆⊗B⋆)−hK+3(A,∧KN ⋆⊗S4C⋆)≤hK+3(A,∧KN ⋆⊗S2C⋆⊗∧2B⋆) . (6.15)

This condition then guarantees the vanishing of HK+3(A, qK
1 ) and subsequently that of

HK(A,∧KN ⋆ ⊗ ∧pV⋆).

We need not consider cases with p > 4 since our bundles are maximally of rank 5.

In summary then, the conditions (6.10), (6.12) and (6.15) suffice to guarantee eqs. (6.5)

and hence our main claim, eq. (6.1). These conditions on the ambient space cohomology

can be readily checked algorithmically using the Bott formula (B.6) and the Künneth

formula (B.7). We have done so for all our positive monads using computer scans and find

these conditions are always satisfied.

In conclusion, for all positive monad bundles V , H0(X,∧pV ⋆) = 0 for p =

1, . . . , rk(V ) − 1. This concludes our non-trivial check of stability.

7. Computing the particle spectrum

7.1 Bundle cohomology

While computing the full cohomology of monad bundles is generally a difficult task, it will

become clear in the following that significant simplifications arise for positive monads. This

computational advantage is of course one of the motivations to consider positive monads

and it will lead to a number of general statements about their cohomology.

7.1.1 Number of families and anti-families in H1(X,V ) and H1(X,V ⋆)

The defining short exact sequence (4.1) of the monad bundle V induces the long exact

sequence

0 → H0(X,V ) → H0(X,B) → H0(X,C)

→ H1(X,V ) → H1(X,B) → H1(X,C)

→ H2(X,V ) → H2(X,B) → H2(X,C)

→ H3(X,V ) → H3(X,B) → H3(X,C) → 0

(7.1)

Since both B and C are sums of positive line bundles we know from Kodaira vanishing that

the cohomologies Hq(X,C) = Hq(X,B) = 0 for all q > 0. The above long exact sequence
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then immediately implies that H2(X,V ) = 0. In the previous section we have already

shown that H0(X,V ) = H3(X,V ) = 0 always, so that the only non-vanishing cohomology

of positive monads is H1(X,V ). The dimension h1(X,V ) of this first cohomology can then

be calculated from the index theorem (2.7) or indeed the above long exact sequence. In

summary, one finds

h1(X,V ) = h0(X,C) − h0(X,B) = −ind(V ) , hq(X,V ) = 0 for q 6= 1 . (7.2)

This means that the number of anti-families always vanishes and that the number of families

can easily be read off from the index in figures 1 and 2. The absence of vector-like pairs

of families might be considered an attractive feature and is certainly a pre-requisite for

compactifications with the exact standard model spectrum. We stress that this property is

directly linked to the property of positivity and will not generally hold if we allowed zero

or negative integer entries in the line bundles defining the monad.

7.1.2 Computing H1(X,∧2V ⋆) and number of Higgs multiplets

For SU(3) bundles we have V ≃ Λ2V ⋆ and, hence, the cohomology groups H1(X,∧2V ) and

H1(X,∧2V ⋆) contain no new information. However, for SU(4) and SU(5) this is not the

case and we have to perform another calculation. In the case of rank four, ∧2V ≃ ∧2V ⋆,

so that H1(X,∧2V ) ≃ H1(X,∧2V ⋆). For rank five the situation is less trivial, but from

eq. (2.8) we know that h1(X,∧2V ) and h1(X,∧2V ⋆) are related by the index, ind(V ), of

V . Hence, in both the rank four and five cases it is enough to compute one of H1(X,∧2V )

and H1(X,∧2V ⋆) and, in the following, we will opt for H1(X,∧2V ⋆).

To calculate this cohomology, we proceed as in section 6. Since the arguments therein

were stated for general anti-symmetric power p, it is instructive to be more explicit here.

We start by writing down the Koszul resolution (B.10) for ∧2V ⋆ which is given by

0 → ∧2V⋆ ⊗∧KN ⋆ → ∧2V⋆ ⊗∧K−1N ⋆ → . . . → ∧2V⋆ ⊗N ⋆ → ∧2V⋆ → ∧2V ⋆ → 0 . (7.3)

Recall that K is the co-dimension of the CICY X embedded in the ambient space A and

N is the normal bundle (3.5) of X in A. As a first step we will now derive vanishing

theorems for the cohomologies of the bundles ∧2V ⋆ ⊗ ∧jN ⋆ which appear in the above

Koszul sequence. To do this, we start the exact sequence for antisymmetric products of

bundles from (B.11):

0 → S2C⋆ → C⋆ ⊗ B⋆ → ∧2B⋆ → ∧2V⋆ → 0 , (7.4)

which is induced from the dual sequence

0 → C⋆ → B⋆ → V⋆ → 0 . (7.5)

We can then tensor (7.4) by ∧jN ⋆ for j = 0, . . . ,K and break the resulting 4-term exact

sequence into two short exact sequences

0 → S2C⋆ ⊗∧jN ⋆ → C⋆ ⊗ B⋆ ⊗ ∧jN ⋆ → Qj → 0 ;

0 → Qj → ∧2B⋆ ⊗ ∧jN ⋆ → ∧2V⋆ ⊗ ∧jN ⋆ → 0 ;
j = 0, . . . ,K , (7.6)
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where Qj are approriate (co)kernels. This induces two inter-related long exact sequences

in cohomology on A which are given by

0→
�

�
�

�
�

�
�

�
�

��: 0

H0(A, S2C⋆ ⊗ ∧jN ⋆) →
�

�
�

�
�

�
�

�
�

�
�

��: 0

H0(A, C⋆ ⊗ B⋆ ⊗ ∧jN ⋆) →H0(A, Qj) →

→
�

�
�

�
�

�
�

�
�

��: 0

H1(A, S2C⋆ ⊗ ∧jN ⋆) →
�

�
�

�
�

�
�

�
�

�
�

��: 0

H1(A, C⋆ ⊗ B⋆ ⊗ ∧jN ⋆) →H1(A, Qj) →

→
... →

→
�

�
�

�
�

�
�

�
�

�
�

��: 0

HK+2(A, S2C⋆ ⊗ ∧jN ⋆)→
�

�
�

�
�

�
�

�
�

�
�

�
��:

0

HK+2(A, C⋆ ⊗ B⋆ ⊗ ∧jN ⋆)→HK+2(A, Qj) →

→HK+3(A, S2C⋆ ⊗ ∧jN ⋆)→HK+3(A, C⋆ ⊗ B⋆ ⊗ ∧jN ⋆)→HK+3(A, Qj) →0 ;

0→H0(A, Qj) →
�

�
�

�
�

�
�

�
�

�
�: 0

H0(A, S2B⋆ ⊗ ∧jN ⋆) →H0(A,∧2V⋆ ⊗ ∧jN ⋆) →

→H1(A, Qj) →
�

�
�

�
�

�
�

�
�

�
�: 0

H1(A, S2B⋆ ⊗ ∧jN ⋆) →H1(A,∧2V⋆ ⊗ ∧jN ⋆) →

→
... →

→HK+2(A, Qj) →
�

�
�

�
�

�
�

�
�

�
�

��:
0

HK+2(A, S2B⋆ ⊗ ∧jN ⋆) →HK+2(A,∧2V⋆ ⊗ ∧jN ⋆)→

→HK+3(A, Qj) →HK+3(A, S2B⋆ ⊗ ∧jN ⋆) →HK+3(A,∧2V⋆ ⊗ ∧jN ⋆)→0 .

(7.7)

Note that since X is of codimension K, the ambient space has dimension K + 3 and hence

there are no non-vanishing cohomology groups above HK+3. Moreover, the bundles N ⋆,

B⋆ and C⋆ as well as their various tensor and wedge products are all negative and, hence, all

their cohomologies except the highest one, namely K + 3, vanish by (6.8); we have marked

this explicitly in eq. (7.7).

Therefore, the sequences (7.7) immediately imply that for all j,

H i(A, Qj) = 0 , i = 0, . . . ,K + 1 ;

H i(A,∧2V⋆ ⊗ ∧jN ⋆) ≃ H i+1(A, Qj) = 0 , i = 0, . . . ,K ;

HK+1(A,∧2V⋆ ⊗ ∧jN ⋆) ≃ HK+2(A, Qj) (7.8)

as well as two 4-term exact sequences:

0 → HK+2(A, Qj) → HK+3(A, S2C⋆ ⊗∧jN ⋆)
g

−→ HK+3(A, C⋆ ⊗ B⋆ ⊗ ∧jN ⋆) → HK+3(A, Qj) → 0 ;

0 → HK+2(A,∧2V⋆ ⊗ ∧jN ⋆) → HK+3(A, Qj) → HK+3(A, S2B⋆ ⊗ ∧jN ⋆)

→ HK+3(A,∧2V⋆ ⊗∧jN ⋆) → 0 . (7.9)

In eq. (7.9) we have introduced a map g which is induced from the defining map f of

the monad in eq. (4.1). As in the previous subsection, g is generic and thus has maximal

rank. The top sequence then implies that HK+2(A, Qj) = 0 and, hence, by eq. (7.8),
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HK+1(A,∧2V⋆ ⊗ ∧jN ⋆) vanishes as well. To summarise then, we find the vanishing

cohomology groups

H i(A,∧2V⋆ ⊗ ∧jN ⋆) = 0 , ∀ i = 0, . . . K + 1, j = 0, . . . ,K . (7.10)

Equipped with these results, we can re-examine the Koszul sequence (7.3). It has K+2

terms and we can break it up into K short exact sequences, introducing (co)kernels much

like we did above. Then, the vanishing of the cohomology groups

Hj+1(A,∧2V⋆ ⊗ ∧jN ⋆) = 0 , ∀ j = 0, . . . ,K , (7.11)

which represent a subset of the vanishing theorems (7.10), implies that

H1(X,∧2V ⋆) = 0 . (7.12)

We emphasize that the assumption of a generic map f , which defines the monad

in (4.1), is crucial to arrive at this result. For rank four bundles with low-energy gauge

group SO(10) it implies (see table 1) that

n10 = h1(X,∧2V ) = 0 , (7.13)

and, hence, a vanishing number of Higgs multiplets. For rank five bundles with low-energy

gauge group SU(5) we have

n5 = h1(X,∧2V ⋆) = 0 , n5̄ = −ind(V ) , (7.14)

where eq. (2.8) has been used. This means the number of 10 and 5̄ representations is

the same, forming complete SU(5) families and there are no vector-like pairs of 5 and

5̄ representations. The absence of Higgs multiplets in the SO(10) and SU(5) models is

a phenomenologically problematic feature which was already observed in ref. [1]. There,

it has also been shown that the number of Higgs multiplets can be non-zero once the

assumption of a generic map f is dropped. A similar situation was encountered in [16].

We expect a similar bundle-moduli dependence of the spectrum, as first discussed

in [13], for the more general class of models considered in this paper. It remains a matter of

a more detailed analysis, focusing on physically promising models within our classification,

to decide if a realistic particle spectrum can be obtained from such a mechanism.

7.1.3 Singlets and H1(X,V ⊗ V ⋆)

Finally, we need to calculate the number of gauge group singlets which correspond to

the cohomology H1(X, ad(V )) = H1(X,V ⊗ V ⋆). We begin by tensoring the defining

sequence (4.5) for V ⋆ by V . This leads to a new short exact sequence

0 → C⋆ ⊗ V → B⋆ ⊗ V → V ⋆ ⊗ V → 0 . (7.15)

One can produce two more short exact sequences by multiplying (4.5) with B and C. Like-

wise, three short exact sequences can be obtained by multiplying the original sequence (4.1)
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for V with V ⋆, B⋆ and C⋆. The resulting six sequences can then be arranged into the fol-

lowing web of three horizontal sequences hI , hII , hIII and three vertical ones vI , vII , vIII .

0 0 0

↓ ↓ ↓

0 → C⋆ ⊗ V → B⋆ ⊗ V → V ⋆ ⊗ V → 0 hI

↓ ↓ ↓

0 → C⋆ ⊗ B → B⋆ ⊗ B → V ⋆ ⊗ B → 0 hII

↓ ↓ ↓

0 → C⋆ ⊗ C → B⋆ ⊗ C → V ⋆ ⊗ C → 0 hIII

↓ ↓ ↓

0 0 0

vI vII vIII

(7.16)

The long exact sequence in cohomology induced by hI reads

0 → H0(X,C⋆ ⊗ V ) → H0(X,B⋆ ⊗ V ) → H0(X,V ⋆ ⊗ V )

→ H1(X,C⋆ ⊗ V ) → H1(X,B⋆ ⊗ V ) → H1(X,V ⋆ ⊗ V )

→ H2(X,C⋆ ⊗ V ) → . . . (7.17)

and we have boxed the term which we would like to compute. We will also need the long

exact sequences which follow from vI and vII . They are given by

0 → H0(X,C⋆ ⊗ V ) → H0(X,C⋆ ⊗ B) → H0(X,C⋆ ⊗ C)

→ H1(X,C⋆ ⊗ V ) → H1(X,C⋆ ⊗ B) → H1(X,C⋆ ⊗ C)

→ H2(X,C⋆ ⊗ V ) → H2(X,C⋆ ⊗ B) → H2(X,C⋆ ⊗ C)

→ H3(X,C⋆ ⊗ V ) → H3(X,C⋆ ⊗ B) → H3(X,C⋆ ⊗ C) → 0 ; (7.18)

0 → H0(X,B⋆ ⊗ V ) → H0(X,B⋆ ⊗ B) → H0(X,B⋆ ⊗ C)

→ H1(X,B⋆ ⊗ V ) → H1(X,B⋆ ⊗ B) → H1(X,B⋆ ⊗ C)

→ H2(X,B⋆ ⊗ V ) → H2(X,B⋆ ⊗ B) → H2(X,B⋆ ⊗ C)

→ H3(X,B⋆ ⊗ V ) → H3(X,B⋆ ⊗ B) → H3(X,B⋆ ⊗ C) → 0 . (7.19)

To make progress we need information about the cohomologies of B⋆ ⊗ B, C⋆ ⊗ C and

C⋆ ⊗ B. For the cyclic cases (the CICYs with h1,1(X) = 1) discussed in ref. [1] all line

bundles L on X have vanishing middle cohomologies, that is H1(X,L) = H2(X,L) = 0

and, hence, the same is true for B⋆⊗B, C⋆⊗C and C⋆⊗B. For the general case discussed

here this is no longer necessarily true since B⋆ ⊗ B, C⋆ ⊗ C and C⋆ ⊗ B may contain

“mixed” line bundles with different sign or zero entries which may have non-vanishing

middle cohomologies. This means in some cases there will not be sufficiently many zero

entries in the above long exact sequences to compute h1(X,V ⊗ V ⋆) without additional

input, for example about the rank of maps.

However, a general formula can be derived for all monads satisfying

H1(X,C⋆ ⊗ C) = H2(X,C⋆ ⊗ B) = 0 . (7.20)
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Since we can compute all line bundle cohomologies we can explicitly check for each given

example whether these conditions are actually satisfied. Let us focus on models where

this is the case. Then the sequence (7.18) implies that H2(X,C⋆ ⊗ V ) = 0 which means

that (7.17) breaks after the second line and this 6-term exact sequence implies:

h1(X,V ⋆ ⊗ V ) = h1(X,B⋆ ⊗ V ) − h1(X,C⋆ ⊗ V )

+h0(X,V ⋆ ⊗ V ) − h0(X,B⋆ ⊗ V ) + h0(X,C⋆ ⊗ V ) . (7.21)

In the above, we have used the fact that for any long exact sequence, whatever the number

of terms, the total alternating sum of the dimensions of the terms vanishes.

We can apply a similar trick to the other 2 long exact sequences. Using our assumptions

H1(X,B⋆ ⊗ C) ≃ H2(X,C⋆ ⊗ B) = 0 in the sequence (7.19) and H1(X,C⋆ ⊗ C) = 0 in

the sequence (7.18) gives the two relations

h1(X,B⋆ ⊗ V ) − h0(X,B⋆ ⊗ V ) = h0(X,B⋆ ⊗ C) − h0(X,B⋆ ⊗ B) + h1(X,B⋆ ⊗ B)

h0(X,C⋆ ⊗ V ) − h1(C⋆ ⊗ V ) = h0(X,C⋆ ⊗ B) − h0(X,C⋆ ⊗ C) − h1(X,C⋆ ⊗ B) .

Inserting these into eq. (7.21) and using the fact that for a stable SU(n) bundle V , h0(X,V ⊗

V ⋆) = 1 (see section 4.2 of [1]) gives the final result

n1 = h1(X,V ⋆ ⊗ V ) = h0(X,B⋆ ⊗ C) − h0(X,B⋆ ⊗ B) − h0(X,C⋆ ⊗ C)

+h0(X,C⋆ ⊗ B)−h1(X,C⋆ ⊗ B)+h1(X,B⋆ ⊗ B)+1 (7.22)

for the number of singlets. We emphasize that this is result is valid provided the monad

satisfies the two conditions (7.20). In this case, eq. (7.22) allows an explicit calculation of

the number of singlets from the known line bundle cohomologies.

As an example, we consider the manifold

[

1

3

∣

∣

∣

∣

∣

2

4

]

, and the rank 4 monad bundle

defined by

B = OX(1, 1)⊕6 ⊕OX(2, 1)⊕2 , C = OX(2, 3)⊕2 ⊕OX(3, 1)⊕2 . (7.23)

It can be checked from the known line bundle cohomologies that this bundle indeed

satisfies the conditions (7.20). The number of singlets, calculated from eq. (7.22), is then

given by n1 = 241.

For bundles which do not satisfy (7.20) other methods can be employed. In favourable

cases, the cohomologies of B⋆⊗B, C⋆⊗C and C⋆⊗B may have a different pattern of zeros

which still allows the derivation of a formula for n1 analogous to eq. (7.22) by combining

appropriate parts of the sequences (7.17), (7.18) and (7.19). If this is not possible one

has to resort to ambient space methods and Koszul resolutions in combination with our

results for the ranks of maps in Leray spectral sequences. Here, we will not present such

a calculation which is likely to be complicated and, if required at all, should probably be

only carried out for physically promising models. However, we stress that all the necessary

technology is available so that the number of singlets can, not just in principle but in

practice, be obtained for all positive monads on favourable CICYs.
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8. Conclusions and prospects

In this paper, we have analysed positive monad bundles with structure group SU(n)

(where n = 3, 4, 5) on favourable CICY manifolds in the context of N = 1 supersymmetric

compactifications of the E8 × E8 heterotic string. We have shown that the class of

these bundles, subject to the heterotic anomaly condition, is finite and consists of 7118

examples. More specifically, we find that these 7000 or so monads are concentrated on

only 36 CICYs. All other of the 4500 or so CICYs do not allow positive monads which

satisfy the anomaly condition.

As a highly non-trivial test for the stability of these bundles we have shown that

H0(X,∧pV ∗) = 0 for p = 1, . . . , rk(V ) − 1 for all our examples. A systematic stability

proof will be presented in ref. [46]. We have also shown how to calculate the complete

particle spectrum for these models. In particular, we found that the number of anti-

families always vanishes so that there are no vector-like family anti-family pairs present

in any of the models. For low-energy groups SO(10) and SU(5) (n = 4, 5) the number of

Higgs fields vanishes at generic points in the bundle moduli space. However, as was shown

in ref. [1], for non-generic values of the bundle moduli, Higgs multiplets can arise. The

details of this moduli-dependence of the spectrum (see ref. [13]) have to be analysed for

specific models, preferably focusing on physically promising examples. Furthermore, we

have shown that the number of gauge singlets can be calculated, in many cases in terms of

a generic formula, or else by applying more elaborate methods.

Based on the results for the particle spectrum, we have scanned the 7118 bundles

imposing two rudimentary physical conditions. First, the number of families should equal

3k for some non-zero integer k, so there is a chance to obtain three families after dividing

by a discrete symmetry of order k. In addition, the Euler number of the Calabi-Yau space

should be divisible by k. It turns out that only 559 out of the 7118 bundles pass this basic

test. If, in addition, one demands that the order k of the symmetry does not exceed 13

one is left with only 21 models.

This drastic reduction of the number of viable models due to a few basic physical

constraints is not uncharacteristic and has been observed in the context of other string

constructions [43, 44]. In our case, the main reason for this reduction is the relatively large

values for the Euler characteristic of our models (roughly, a Gaussian distribution with a

maximum at about 60, see figure 1) in conjunction with the empirical fact that large discrete

symmetries of Calabi-Yau manifolds are hard to find. In order to make this statement more

precise a systematic analysis of discrete symmetries Γ on CICYs X (which lead to a smooth

quotient X/Γ) has to be carried out and the results of this analysis have to be combined

with the results of the present paper. We are planning to perform this explicitly in the

near future. However, even in the absence of such a classification of discrete symmetries

we find it likely that the vast majority of positive monads will fail to produce three-family

models on X/Γ given the large number of families on the “upstairs” manifold X.

These large numbers are, of course, directly related to the property of positivity. An

obvious course of action is, therefore, to relax this condition and also allow zero or even

slightly negative integers br
i and cr

j in the definition (4.1) of the monad. The number of
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these non-positive monads is vastly larger than the number of positive ones and it turns

out the distribution of their Euler characteristics is peaked at smaller values, as expected.

Crucially, as will be shown in ref. [46], some of these non-positive monads are still stable

and, hence, lead to supersymmetric models. We, therefore, believe that the generalisation

to non-positive monads is a crucial step towards realistic models within this framework

and work in this direction is underway [45].
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A. Notation and conventions

Throughout the paper we will adhere to the following notations:

X Calabi-Yau threefold embedded in ambient space A = P
n1 ⊗ · · · ⊗ P

nm

[qr
j ]

r=1,...,m
j=1,...,K configuration matrix for co-dimension K CICY in product

of m projective spaces

OA(k) product of line bundles OA(k1) ⊗ · · · ⊗ OA(km) on A

OX(k) restriction of OA(k) to X

N Normal bundle of X in A

TX Tangent bundle of X; similarly, TA is the tangent bundle of A

V Vector bundle on X, the dual bundle is denoted V ⋆

B,C Sum of line bundles
⊕

i OX(bi) and
⊕

a OX(ca) on X

V Vector bundle on ambient A which restricts to V on X

B, C Sums of line bundles
⊕

i OA(bi) and
⊕

a OA(ca) on A

B. Some mathematical preliminaries

In this appendix, we collect some useful mathematical facts which will be of importance

throughout the paper. These can be found in standard references such as [40 – 42, 30].

Serre duality. For a vector bundle V on a manifold M of complex dimension n, Serre

duality relates the cohomology groups of V with those of its dual as:

H i(M,V ) ≃ Hn−i(X,V ⋆ ⊗ KM ) i = 0, 1, . . . , n , (B.1)

where KM =
∧n TM⋆ is the canonical bundle of M . For a Calabi-Yau threefold X,

the canonical bundle KX is the trivial bundle OX and, hence, Serre duality takes the

particularly simple form

H i(X,V ) ≃ H3−i(X,V ⋆) i = 0, 1, 2, 3 . (B.2)
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Atiyah-Singer index theorem. For a unitary bundle V on a Calabi-Yau threefold X,

the index theorem relates the index, or the alternating sum of dimensions of the cohomology

groups of V with the characteristic classes of the bundle and the manifold:

ind(V ) =

3
∑

i=0

(−1)ihi(X,V ) =

∫

X

ch(V ) ∧ Td(X) =
1

2

∫

X

c3(V ) , (B.3)

where Td(X) is the Todd class for the tangent bundle of X. Only in the last equality have

we used the fact the both c1(TX) and c1(V ) vanish.

Higher exterior powers. For SU(n) bundles we have the equivalences

∧pV ≃ ∧qV ⋆ p + q = n (B.4)

and the relation (see appendix B of ref. [12]),

c3(∧
2V ) = (n − 4)c3(V ) . (B.5)

The Bott formula. The cohomology of line-bundles over a projective space P
n is given

by a simple formula, the so-called Bott formula (see, for example, ref. [32]), which dictates

that

hq(Pn, (∧pTP
n) ⊗OPn(k)) =



















(

k+n+p+1
p

)(

k+n
n−p

)

q = 0 k > −p − 1,

1 q = n − p k = −n − 1,
(

−k−p−1
−k−n−1

)(

−k−n−2
p

)

q = n k < −n − p − 1,

0 otherwise .

(B.6)

Künneth formula. The Künneth formula gives the cohomology of bundles over direct

product of spaces. For a product A = P
n1 ⊗ · · · ⊗ P

nm of projective spaces and k =

(k1, . . . , km), it states that

Hn(A,OA(k)) =
⊕

q1+···+qm=n

Hq1(Pn1 ,OPn1 (k1)) × . . . × Hqm(Pnm,OPnm (km)) , (B.7)

Kodaira vanishing theorem. For positive line bundle L on a Kahler manifold M the

Kodaira vanishing theorem states that

Hq(M,L ⊗ KM ) = 0 ∀ q > 0 , (B.8)

where KM is the canonical bundle on M . For a Calabi-Yau manifold, X, KX is trivial and

therefore the only non-vanishing cohomology for a positive line bundle, L, on X is H0(X,L).

On the ambient space A it is useful to look at the the Serre dual of eq. (B.8). For positive

line bundles L on A eq. (B.1) this leads to Hq(A,L⊗KA) ≃ Hdim(A)−q(A,L⋆⊗K⋆
A⊗KA).

The canonical bundle KA and its dual tensor to OA and we have the important fact that

Hq(A,L⋆) = 0 unless q = dim(A). (B.9)
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Koszul resolution. The standard method of computing the cohomology of a vector

bundle V = V|X obtained by restricting the bundle (or sheaf) V on the ambient space

A to the variety X is the so-called Koszul Resolution of V . In general, if X is a smooth

hypersurface of co-dimension K, which is the zero locus of a holomorphic section s of the

bundle N , then the following exact sequence exists:

0 → V ⊗ ∧KN ⋆ → V ⊗ ∧K−1N ⋆ → . . . → V ⊗N ⋆ → V → V → 0 . (B.10)

Thus, if the cohomology of the bundles ∧jN ⋆ ⊗V are known on the ambient space, we can

use the Koszul sequence to determine the cohomology of V . We recall that for a CICY,

the normal bundle is given in terms of the configuration matrix, as in eq. (3.5).

Exterior-power sequence. Given a short exact sequence of vector bundles A, B and

C on any manifold:

0 → A → B → C → 0 ,

there exists a long exact sequence for the p-th exterior power of C, derivable from a so-called

Eagon-Northcott complex. This sequence reads:

0 → SpA → Sp−1A ⊗ B → . . . → A ⊗ ∧p−1B → ∧pB → ∧pC → 0 . (B.11)

C. More on CICYs

We have introduced basic facts about CICYs in the main text. In this appendix, we present

some more detailed properties relevant to our investigation. Many of these are standard

results which can be found, for example, in ref. [30] but we also discuss some new aspects,

in particular the redundancy in the CICY list.

C.1 Chern classes and intersection form

We focus on a class of CICYs X, defined as the common zero locus of K polynomials in an

ambient space A = P
n1 ⊗· · ·⊗P

nm with m projective factors of dimension nr. . . This CICY

is characterised by a configuration matrix [qr
j ]

r=,...,m
j=1,...,K , as in eq. (3.3), where qr

j denotes the

degree of the jth polynomial in the variables of the rth projective space. These degrees

are subject to the complete intersection condition (3.2) and the condition (3.4) which

ensures the vanishing of the first Chern class c1(TX). Integration over X can be reduced

to integration over the ambient space A using the formula

∫

X

· =

∫

A

µ ∧ · , µ := ∧K
j=1

(

m
∑

r=1

qj
rJr

)

. (C.1)

In this way, one can compute the triple intersection numbers

drst =

∫

X

Jr ∧ Js ∧ Jt (C.2)
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where Jr are the Kahler forms of the ambient space projective factors P
nr . The Chern

classes are given as simple functions of the entries in the configuration matrix [30]. The

total Chern class can be expanded in terms of the ambient space Kahler forms as

c(TX) = cr
1(TX)Jr + crs

2 (TX)JrJs + crst
3 (TX)JrJsJt , (C.3)

where

cr
1(TX) = 0 (C.4)

crs
2 (TX) =

1

2



−δrs(nr + 1) +

K
∑

j=1

qr
j q

s
j



 (C.5)

crst
3 (TX) =

1

3



δrst(nr + 1) −
K
∑

j=1

qr
jq

s
jq

t
j



 . (C.6)

The second Chern class should be expressed as c2(TX) = c2r(TX)νr relative to a basis νr

of H4(X, Z), as defined in eq. (3.6). The conversion from the coefficients crs
2 (TX) above

can be accomplished by contraction with the intersection numbers

c2r(TX) = drstc
st
2 (TX) . (C.7)

Similarly, the Euler number χ(X) is obtained from

χ(X) = drstc
rst
3 (TX) . (C.8)

C.2 Hodge numbers

We wish to know the full topological data of X including the Hodge numbers h1,1(X) and

h2,1(X), whose difference, by the Index Theorem (B.3), is the Euler number χ(X):

h1,1(X) − h2,1(X) =
1

2
χ(X) . (C.9)

Therefore, it suffices to compute either one of these two Hodge numbers. This calculation

is the subject of ref. [4] and it this turns out to be much more involved than calculating

the Euler number. While this paper explains the basic method, sadly, the actual data for

these Hodge numbers seems to have been lost. Both for the purpose of reconstructing this

data and because related techniques can be applied to monad bundles it is useful to review

the methods of ref. [4].

Recalling that

Hp,q(X) ≃ Hq(X,∧pT ⋆X) , (C.10)

where T ⋆X is the cotangent bundle of X, we can write the desired cohomologies as

H1,1(X) = H1(M,T ⋆X), H2,1(X) ≃ H1,2(X) = H2(X,T ⋆X) ≃ H1(X,TX) . (C.11)

In the second part of the above expression, we have used Serre duality, (B.1), to establish

the isomorphism between H2(X,T ⋆X) and H1(X,TX).
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We can therefore concentrate on the computing H1(X,TX). We invoke the Euler

sequence which states that, for an embedding of X into an ambient space A, there is a

short exact sequence

0 → TX → TA|X → N|X → 0 , (C.12)

where N is the normal bundle of X in A and TA is the the tangent bundle of A. The

bar and the subscript, X, denotes restriction of the bundle to the Calabi-Yau manifold X.

This induces a long exact sequence in cohomology as

0 → H0(X,TX) → H0(X,TA|X) → H0(X,N|X ) →

→ H1(X,TX)
d
→ H1(X,TA|X) → H1(X,N|X ) →

→ H2(X,TX) → . . .

(C.13)

Since X is a Calabi-Yau manifolds it follows that H0(X,TX) = H1,3(X) = 0. Using this,

the relations (C.11), and the fact that rk(d) = 0 (see eq. (6.1) of ref. [4]), we have the short

exact sequence

0 → H0(X,TA|X) → H0(X,N|X ) → H2,1(X) → 0 , (C.14)

and, consequently,

h2,1(X) = h0(X,N|X ) − h0(X,TA|X) . (C.15)

C.2.1 Hodge number obstructions

Making use of the essential techniques of Leray tableaux and Koszul resolutions, one can,

in principle compute the two terms in eq. (C.15) and, hence, obtains the Hodge numbers of

complete intersection 3-folds. However, direct calculation shows that one quickly encoun-

ters certain obstructions to the computation which will naturally divide our set of 7890

configurations.

Trivial direct products. First of all, we recognize that there are trivial cases in the

list, comprising of CICYs which are simply direct products of lower-dimensional Calabi-

Yau manifolds, viz., K3 × T 2 and T 6. These generically have reduced holonomy and we

shall not consider them. The identifiers for these are 31-52, a total of 22 cases. Therefore,

our list is immediately reduced to be of length 7868.

Normal bundle and obstructions. The Leray Ej,k
1 (NX) tableaux is readily established

for the normal bundle NX according to (B.6) and (B.7). It turns out that if there exists

j ≤ j′ in [−K, 0] such that

Ej,j
1 (N|X) 6= 0 and Ej′,−j′

1 (N|X) 6= 0 , (C.16)

then, the spectral sequence cannot be iterated to obtain E∞ without the knowledge of

the ranks of some maps. Such a case, which we call “normal bundle obstructed” needs to

be addressed separately [4]. For all remaining cases, the Leray spectral sequence actually

terminates at E1 and we can read off the required cohomology as [4]:

h0(X,N|X) =

K
∑

j=0

ej,j
1 (N|X) +

K
∑

j=1

j−1
∑

l=0

(−1)j+lel,j
1 (N|X) . (C.17)
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In the above, we have used, and shall henceforth adopt, the notation that hj is the dimen-

sion of the cohomology group Hj , ej,k
r is the dimension of Ej,k

r .

Now, we find a total of 12 normal bundle obstructed cases, namely the CICYs with

identifiers 1443, 1877, 2569, 2980, 3747, 4228, 4448, 4757, 6174, 6229, 7236 and 7243. For

these, ref. [4] gives a rule to replace the configuration matrix by an isomorphic one which

does not have a normal bundle obstruction. To this equivalent configuration, eq. (C.17)

can then be directly applied.

Tangent bundle and obstructions. Like the normal bundle spectral sequence the tan-

gent bundle spectral sequence can, in general, be obstructed, that is, one cannot compute

E∞ without knowledge of specific maps. However, for the case of compete intersection

calabi-yau manifolds we are saved from this difficulty by several useful results.

The first such result is that for a particular class of configurations (those without a

decomposing (n−1)-leg, see ref. [4] for a description of the dot/leg diagrams and notation),

Eq+k,k
1 (V ) vanishes for q ≥ n − 1 for any bundle V on X. It turns out that if a diagram

representing a Calabi-Yau 3-fold has no decomposing 1-legs, H1(X,TA) vanishes and no

decomposing 2-legs implies that H2(X,N) = 0 so that the sequences

0 → H0(X,TA) → H0(X,NX ) → H1(X,TX) → 0

0 → H1(X,NX ) → H2(X,TX) → H2(X,TA) → 0 (C.18)

are exact [4].

For 3-folds with decomposing 1-legs the hodge numbers can be computed by relying

on the classification of complex surfaces (see eq. (2.4)in ref. [4]). Simple formulas for these

Hodge numbers in terms of sub-diagrams were found in [4]. For the bulk of cases, however,

the diagrams have no decomposing 1-legs.

Further, it can be shown that an n-fold configuration with the property of a decom-

posing (n − 1)-leg is equivalent to another one with no decomposing (n − 1)-leg [4]. So

in analysing configurations representing Calabi-Yau 3-folds it is sufficient to look only at

configurations with no decomposing 2-legs. This leads to the following structure

E0,0
1 (TA) =

m
⊕

r=1

H0(Pnr
r , T (Pnr

r ));

EK+2,K
1 (TA) ≈ Cm;

Eq+k,k
1 (TA) � H0(Pnr

r , T (Pnr
r ) ⊗ h−1

r ) ≈ Cnr+1, ∀{A, r :
∑

a∈S

qr
a = 1, k = |S| + 1}

where |S| denotes the cardinality of S, the set of indices labeling a subset of constraints

which act only in a (q + k)-dimensional factor of the ambient space A. With these results

in hand, we can compute the Hodge numbers of X.

C.3 Redundancy in the CICY list

It is worth observing that the 7890 CICYs which appear in the original list are presumably

not all topologically distinct [39]. This is a relatively new observation and should be

pointed out.
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Wall’s theorem (see, for example, ref. [30]) states that for real six-folds, the intersection

form and the second Potryagin class suffice to distinguish non-isormophism. Though for

complex threefolds, these are not enough, the two quantities are good indicators (and will

be enough to distinguish our heterotic models). Therefore, we propose a simple check for

redundancy. We compare the basic topological invariants Hodge numbers h1,1(X), h2,1(X),

second Chern class c2r(TX), and intersection numbers drst, and identify any two CICYs

with identical sets, up to permutation in the indices r, s.

Upon implementing such a scan one finds, of the 7890 in the original list, that there

are 378 sets of redundancies, consisting of equivalent pairs, triples, or even n-tuples for n

as large as 6. These are expected to have isomorphism. In all, 813 manifolds are involved;

taking one representative from each of the 378 sets, a total of 435 CICY seem redundant.

Throughout the rest of the paper, however, we will adhere to the original identifier names

of the manifolds to avoid confusion and shall point out explicitly, where necessary, the

equivalences.
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